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Abstract—The report surveys the evolution of image denoising
techniques from the perspectives of detection, measurement, and
removal. Since noise detection and measurement are intrinsically
the same, we focus on the discussion of noise measurement and
noise removal techniques. For noise measurement approaches,
we survey filter-based, block-based, and wavelet-based, as well
as other important achievements in the area. For noise removal
approaches, we also survey from four stages in roughly chrono-
logical order from 1970s to the beginning of 2010s, i.e., spatial-
domain, transform-domain, non-local, and recent achievements.
Specifically, the recent approaches mainly consist of TV mini-
mization, sparse coding, and deep learning.

I. INTRODUCTION

As the first 100×100 CCD camera was invented in 1975, the
study of digital image denoising started around the same time.
Since then, the noise removal techniques have experienced
prosperous development as CCD cameras are used widely in
computer vision. There is a large amount of literature on image
denoising. By contrast, the literature on noise detection and
estimation is very limited [1]. Since noise measurement has
implied the detection procedure, i.e., giving the noise level
of a image implies whether there is noise in the image, we
consider noise detection and measurement as the same process
that is referred to as measurement. The scope of the report is
to focus on noise measurement and removal techniques for
natural images.

Since noise of a digital image is greatly related to the
acquisition instrument, modeling the physical imaging process
of a camera is an intuitive way to measure the noise level [2],
[3]. In practice, however, noise modeling in images is also
affected by data transmission media, discrete sources of ra-
diation, etc. [4]. For simplicity, most of the natural images
are simply assumed to be corrupted by additive random noise
which is modeled as a zero-mean Gaussian distribution [5]–
[7]. And most noise measurement works are filter-based or/and
block-based approaches in either spatial or spectral domain. A
brief review can be seen in [8] published in 2013.

Image denoising was first studied by Nasser Nahi at USC
in early 1970s (though he used the name statistical image
enhancement in his paper) [9]. In later 1970s, this problem
was tackled by computer vision pioneers such as S. Zucker
and A. Rosenfeld in their paper titled “Iterative enhancement
of noisy images” [10]. In 1980, JS Lee published an important
paper titled “Digital image enhancement and noise filtering by

use of local statistics” [11]. Until then, most works applied
statistical method in the spatial domain of the pixel array.

In late 1980s, the invention of wavelet transforms has
led to dramatic progress in image denoising originated by
D. Donoho [12] in 1995, E. Simoncelli and E. Adelson
[13] in 1996. Wavelet transform gives a superior perfor-
mance in image denoising due to properties such as sparsity
and multiresolution structure. Since then, various wavelet-
based image denoising algorithms were introduced. Ever since
Donoho’s wavelet-based soft-thresholding approach was pub-
lished in 1995, researchers have published different algorithms
to adaptively achieve the optimal threshold of wavelet coeffi-
cients [14], [15]. Probabilistic models [16] based on the statis-
tical properties of the wavelet coefficients seems to outperform
the thresholding techniques and gained ground like Gaussian
scale mixture (GSM) [17]. The class of geometric wavelets
such as curvelet transform [18] has also found promising
application in image denoising.

In the recent decade, non-local denoising has been explored,
and it potentially increases the performance of image de-
noising. [19] first presented the non-local means (NL-means)
algorithm in 2005, which operated in the spatial domain.
Unlike previous local smoothing filters, such as the Gaussian
filtering [20], the anisotropic filtering [21], [22] and the
neighborhood filtering [23], the NL-means not only compares
the gray level in a single point but also the geometrical
configuration in the whole neighborhood. Since then, the non-
local method has been extended to the transformed domain
and merged with other algorithms like sparse coding [24]. One
of breakthroughs was made by the researchers from Finland
in their block-matching 3D filtering (BM3D) framework [25]
published in 2007. Then, its extensions, e.g., shape-adaptive
BM3D [26] and BM3D-based deblurring [27] appeared in later
years. Until now, the BM3D is still one of the most competitive
filters.

In recent years, sparse coding becomes a hot topic in
image denoising, where the learned simultaneous sparse cod-
ing (LSSC) [24] in 2009 and clustering-based sparse rep-
resentation (CSR) [28] in 2011 are two milestones, whose
denoising performance has shown convincing improvements
over BM3D. With sparse coding gaining popularity in image
denoising, related algorithms for dictionary learning and solv-
ing sparse problem are published, e.g., Bayesian dictionary
learning [29], locally learned dictionaries [30] and the famous



K-SVD [31]. At the same time, total variation (TV) based
algorithms [32] also receive enough attention, as well as deep
learning methods [33].

This report will discuss the evolution of image noise mea-
surement and removal techniques, respectively, in roughly
chronological order. Due to the page limit, only the clas-
sic algorithms in each stage are described in detail. Those
extensions will only be highlighted of their advantages and
limitations. Section II briefly lists the algorithms of image
noise measurement. Section III discusses the evolution of
image denoising algorithms in roughly four stages: spatial-
domain, transform-domain, non-local and recent denoising
approaches.

II. DETECTION AND MEASUREMENT OF IMAGE NOISE

Noise level is an important parameter to many image
processing applications such as denoising, segmentation, and
so on. In 1993, S. Olsen [34] first gave a complete description
and comparison of six early noise estimation algorithms. They
are classified into two different approaches: filter-based (or
smoothing-based) and block-based. In filter-based methods,
the noisy image is first filtered by a low-pass filter to suppress
the image noise. Then the noise variance is computed from the
difference between the noisy image and the filtered image. In
blocked-based methods, images are tessellated into a number
of blocks. The noise variance is then computed from a set of
homogeneous blocks. Since then, many different approaches
were proposed for noise estimation. Basically they are still
filter-based, bock-based, or the combination of both. The
most common model for noise is the additive white Gaussian
noise (AWGN). The goal of noise level estimation is to
estimate the unknown standard deviation σn, given only a
single observed noisy image. Section II-A and II-B discuss the
filter-based and block-based approaches, respectively. After the
invention of Wavelet transformation, noise estimation began
to perform in the wavelet domain, as well as some other
transformed domain, which is discussed in section II-C. Some
other works that not belong to three mainstreams are discussed
in section II-D.

A. Filter-based Approaches

In the filter-based approaches, there are two branches: 1)
The processed image is convolved with a high-pass filter (e.g.,
Laplacian kernel [35]), so that the filtering result is assumed
to contain only the noise, which allows direct estimation of
the noise variance. 2) The difference of the raw image and
the response of a low-pass filter (e.g., Gaussian kernel )
is computed, and the difference is assumed to contain only
the noise. A common step of the filter-based algorithms is
the convolution between the raw image and a sliding mask
(kernel), as shown in Fig. 1. This process is typically referred
to as discrete convolution filtering or data masking (Gonzalez
and Woods 1992) [36].

Later works mostly focused on how to design the kernel to
achieve better and faster noise estimation. Two early kernels–
the average and median kernel—were tested in [34], which

Fig. 1. A toy example of mask filtering. Convolution of a 8×8 image with
a 3×3 filter to yield a 6×6 output image [37].

shows that these two kernel are unsuitable when there is fine
texture in the image. [35] proposed the Laplacian kernel that
is much faster to estimate the noise level because it directly
extract high-frequency component (noise) and suppress the
image structure. By the same token, [38], [39] applied a
gradient related kernel. However, the edges or fine details are
easy to be considered as noise by mistake. [36] employed
Laplacian and gradient masks to remove edge structure from
the noise. Similarity, [7] cooperated the Laplacian kernel
with an edge detector. To further accurately extract noise,
preprocessing on the raw image is performed to remove the
influence of image structure like [40]. With the similar idea,
[41] sharpened the raw image first to enhance the noise, and
then the noise variance is estimated by analyzing the edge
gradients after a smooth filter. The main difficulty of the filter-
based approaches is that the filtered result is assumed to be
the noise, but this assumption is not always true, especially
for images with complex structure or fine details [42].

B. Block-based Approaches

In stead of involving all pixels to estimate the noise
variance, block-based approaches decompose the image into
blocks with small standard deviation and change of inten-
sity. Such blocks are usually referred to as homogeneous
patches/blocks. The intensity variation of a homogeneous
patch is assumed to equal the noise variance.

In [43], the blocks whose standard deviations of intensity
close to the minimum standard deviation among decomposed
blocks are selected, and then the noise level is computed
from the selected blocks. [44] determined homogeneous blocks
based on high-pass filter and special masks for corners to reject
blocks with structure first and then estimate the noise variance
based on those remained blocks. [45] supported the block-
based approach in a more theoretical manner. [46] applied the
Sobel edge detector on blocks to exclude structures or details
from contributing to the estimation of noise variance. [47]



endeavored to speed up the searching of those optimal homo-
geneous blocks through trimming estimation samples. These
methods are effective, but they tend to overestimate the noise
level for small noise level cases and make underestimation
under large noise level.

A breakthrough was made in [8], which showed that the
noise variance can be estimated as the smallest eigenvalue of
the image block covariance matrix, and it does not assume
the existence of homogeneous areas in the input image, hence
it can successfully process images containing only textures.
[42] followed up to apply PCA on low-rank blocks without
high frequency components. Actually, the similar algorithm
was published about 20 years earlier in [48] (1996), titled
“Noise estimation and filtering using block-based singular
value decomposition”. But it did not make a relative complete
comparison with 13 existing methods like [8] (2013).

C. Wavelet-based Approaches

The wavelet-based approaches usually assume that the
wavelet coefficients at the finest decomposition level (sub-
band HH1) corresponds to the noise. The process of wavelet
transform is illustrated in Fig. 2, and Fig. 3 gives an example
of three layer decomposition using discrete wavelet transform
(DWT).

Fig. 2. Since two dimensional wavelet filters are separable functions, 2D
DWT can be obtianed by first applying the 1D DWT row-wise (to produce
L and H subbands in each row) and then column-wise as shown in (a). In
the first level of decomposition, four subbands LL1, LH1, HL1 and HH1 are
obtained. Repeating the same in the LL1 subband, it produces LL2, LH2,
HL2 and HH2 and so on, as shown in (c). [49]

Since Donoho proposed the median absolute deviation
(MAD) [5], [12] based on wavelet shrinkage (VisuShrink),
his work was followed and improved by many researchers,
most of whom focus on how to determine the threshold of
wavelet coefficients to split noise. VisuShrink proposed a non-
adaptive thresholding method, by contrast SureShrink [51]
provided an adaptive one. [52] analyzed the noise variance
on multiple subbands, rather than only on the HH1 subband.
[13], [53] proposed the BayesShrink, an adaptive thresholding,
which outperforms previous wavelet shrinkage methods. [6]
proposed two alternative wavelet-based methods to estimate
noise levels based on training samples. In the first method,
the noise standard deviation estimation is computed as a linear

(a) Lena image (b) Three layer decomposition [50]

Fig. 3. The three layer decomposition of the ’Lena’ image using DWT

combination of normalized moments with learned coefficients.
In the second method, the value of the cumulative distribution
function (CDF) of local variances at a given point is computed
for training images and stored in a lookup table against the
noise variance. For a new image, the noise variance estimate
is taken from the lookup table using the CDF value of this
image.

However, such schemes tend to overestimate the noise stan-
dard deviation in applications where the SNR in the wavelet
components is high because it assumes that the coefficients
of the finest decomposition level is associated only to the
noise. [54] proposed a residual autocorrelation power (RAP)
approach based on BayesShrink, which does not require the
above common assumption. The processed image is denoised
by the BayesShrink algorithm using several values of the noise
variance, and then the behavior of the residual autocorrelation
in a range of noise variance values is analyzed in order
to find the true noise variance. [55] cooperated block-based
approach and MAD in the transformed domain—applying
discrete cosine transform (DCT) on nonlocal similar blocks
and then estimating the noise level through MAD.

D. Other Approaches

Some works estimate the noise level through fuzzy logic,
modeling imaging process of the camera or noise statistics.
Of course, the noise measurement algorithms do not limited to
these mentioned ones. Here, only those representative methods
are collected.

In camera modeling method, [2] gave an early attempt
to build physical models for charged-coupled device (CCD)
video cameras and material reflectance. It suggests that the
variation in digitized pixel values is due to sensor noise and
scene variation. Then, this model was simplified in [1]. [3]
showed how to estimate an upper bound on the noise level
from a single image based on a piecewise smooth image prior
model and measured CCD camera response functions. It also
suggests that noise level changes with brightness and uses
Bayesian MAP inference to infer the noise level function.

An early literature using fuzzy method is [56], which
requires a knowledge base contains a number of fuzzy sets de-
cided by experts or derived from the histogram of a reference
image. [57] applied the fussy system on chi-square statistics



to decide the level of noise. [58] used fuzzy gradient values
to determine if a certain pixel is corrupted with impulse noise
or not.

For statistical methods, [59] modeled the image as a mixture
of two Gaussian distributions, where the distributions are as-
sociated with the signal and noise, respectively. [60] suggested
that the kurtosis of marginal bandpass filter response distribu-
tions should be constant for a noise-free image, which allows
the construction of a kurtosis model for a noisy image, and
the noise variance is assessed by finding the best parameters
of this model. Last but not least, a Bayesian framework with
a learned Markov random field prior (Fields of Experts [61])
for noise level estimation was proposed in [62].

III. IMAGE NOISE REMOVAL TECHNIQUES

The ultimate goal of image noise measurement is alway
to accurately remove the noise—denoising. Thus, most al-
gorithms mentioned in section II can be directly applied in
denoising. In this section, the image denoising algorithms will
be arranged in the chronological order to illustrate the great
evolution. Generally speaking, digital image denoising was
performed in the spatial domain using statistical methods at
the very beginning from the 1970s to 1980s (section III-A).
As the invention of wavelet transform in late 1980s, a new era
was started to dramatically improve the performance of image
denoising, which will be discussed in section III-B. Until the
year of 2005 when the non-local method was first proposed,
the image noise removal technique entered another stage as
illustrated in section III-C. Section III-D talks about some
other original approaches, namely variational formulations,
sparse coding and deep learning, which are mostly proposed
in the last decade. An overview of the evolution of image
denoising techniques is shown in Table I .

A. Spacial Approaches

Around 1980, those early ways of removing noise from
digital image are to employ spatial filters—a sliding window
performing as low pass filtering on groups of pixels with
the assumption that the noise occupies the higher region of
frequency spectrum. The Wiener filter [63] is a linear filter
that is defined in terms of the signal (image) and noise
autocorrelation functions. It seriously depends on the prior
knowledge of the spectral properties of the original signal.
[11] proposed the basic average filter that tends to blur the
image. [10] presented a weighted average filter to overcome
this drawback. The weights are determined depending on the
presence of any edges or lines passing through the window. For
the same purpose, a variety of weighted median filters [69],
[70] were developed after the original median filter [64].

In the later decade, the development of spatial approach
mainly lies in how to utilize the neighborhood. [20] filtered
the image with a isotropic Gaussian kernel. By contrast, an
anisotropic filters was proposed in [21], [22], which attempts
to avoid the blurring effect of the Gaussian by convolving the
image only in the direction orthogonal to the gradient. [67]
proposed a steerable filter that changes the filtering direction

according to the structure of neighborhood. [68] proposed a
rank selection filter, which can be seen as a generalized median
filter. It selects a value that is not necessary the median value
as the output of the filter according to the feature within the
sliding widow. [116] cooperates the median filter with a salt–
pepper impulse noise detector. The bilateral filter was proposed
in [71], which replaces the intensity value at each pixel in an
image by a weighted average of intensity values from nearby
pixels. The weights depend not only on Euclidean distance
of pixels, but also on the range differences. This method
effectively preserves sharp edges.

In the recent decade, it is more popular to consider statistical
property of the neighborhood to suppress noise and keep
details at the same time. [87] utilized the correlations between
a pixel and its neighbors and derives the upper and lower
bound of the homogeneity level that is defined for pixel values
based on their global and local statistical properties. [88]
introduced a local image statistic for identifying noise pixels
in images corrupted with impulse noise of random values.
The statistical values quantify how different in intensity the
particular pixels are from their most similar neighbors. [89]
performed an asymptotic analysis of neighborhood filters as
the size of the neighborhood shrinks to zero. Usually, the
development direction of spatial approach is how to design the
sliding window to achieve better performance. [90] proposed
an adaptive kernel regression method, in which the kernel can
be Gaussian whose covariance matrix vary according to the
condition of patches, e.g., texture, corner, edge or flat.

B. Transform-domain Approaches

The transformed domain mainly refers to the wavelet
domain since most filtering algorithms are performed in
the wavelet domain through the discrete wavelet transform
(DWT). Of course, there also some works perform in other
domains. [65] discussed a filter operated in the frequency
domain using fast Fourier transform (FFT) with an adaptive
cut-off frequency. [66] combined frequency and spatial domain
information. Such method is restricted due to its limita-
tions in providing sparse representation of data. Therefore,
the frequency-domain approach is not considered as a main
method in image denoising. In this section, we’ll mainly
discuss the algorithms in the wavelet domain.

The pioneer Donoho published the wavelet-based denoising
method VisuShrink [12] in 1994, which is a non-adaptive
thresholding method. The next year, he published a similar
method but with soft thresholding (adaptive threshold) [5]. In
[51], the SureShrink with adaptive threshold was proposed.
Since then, the focus of image denoising was shifted from spa-
tial and Fourier domain to the wavelet transform domain. And
most literature focus on different ways to compute the parame-
ters for the thresholding of wavelet coefficients. [72] improved
the SureShrink by directly parameterizing the denoising pro-
cess as a sum of elementary nonlinear processes with unknown
weights. The thresholding/cut-off in the wavelet domain may
cause artifacts such as pseudo-Gibbs phenomenon. [73] pro-
posed the translation-invariant denoising to avoid such arti-



TABLE I
EVOLUTION OF IMAGE DENOISING TECHNIQUES

Time spatial-domain Transform-domain Non-local Others

1970s
&

1980s

Wiener [63]
Average [11]
Weighted average [10]
Median [64]

FFT [65]
spatial-frequency [66]

1990s

Steerable filter [67]
Anisotropic filter [21], [22]
Gaussian filter [20]
Rank selection [68]
Weighted median [69], [70]
Bilateral filter [71]

DWT-VisuShrink [5], [12]
DWT-SureShrink [51], [72]
UDWT [73], [74]
DWT-BayesShrink [13]
Multiwavelet [75]
DWT-MRF [76], [77]
DWT-HMM [78]
SB-TS [79], [80]
DWT-Wiener [81], [82]
SIWPD [83]
CWT [84]
ICA [85]
Wedgelet transform [86]

2000s
Local statistic [87], [88]
Adaptive neighborhood [89]
Kernel regression [90]

spatial-DWT [15]
GSM [91]
BLS-GSM [17]
DWT-uHMT [92]
Curvelet transform [18]
Contourlet transform [93]
DWT-BivariateShrink [94], [95]
Bandelet transform [96]
SA-DCT [97]
FFT-DWT [98], [99]
DWT-NeuralNetwork [100]
DWT-trivariateShrink [101]
Neighborhood DWT [99]

NL-means (spatial) [19]
NL-means (Wavelet) [102]
BM3D [25], [103]
SA-BM3D [104]
BM3D-SAPCA [26]

TV minimization [32]
Sparse coding (SC) [31]
K-SVD [105]
K-LLD [30]
LSSC [24]

2010s PCA [106]
DWT-TV [107] BM4D [108]–[110]

CSR [28]
SDAE [33]
SSDA [113]
MLP [114]
AMC-SSDA [115]

facts. [74] proposed a similar work—shift invariant DWT, and
uses non-orthogonal wavelet transform named undecimated
discrete wavelet transform (UDWT). BayesShrink [13], [53],
[117] minimizes the Bayes risk estimator function assuming
generalized Gaussian prior and thus yields data adaptive
threshold. BayesShrink outperforms SureShrink most of the
times. [75] presented the multiwavelet—using multiple mother
wavelet function. It performs better but increases the compu-
tation complexity.

The wavelet-based approaches are not limited to adaptive
linear or non-linear thresholding, it is fast developed to
statistical modeling or more novel ways to decompose the
coefficients. [76], [77] modeled the wavelet coefficients using
the Markov random field (MRF) which is efficient to capture
intra-scale correlations. [78] developed a new framework for
statistical signal processing based on wavelet-domain hidden
Markov models (HMMs) that concisely models the statistical
dependencies and non-Gaussian statistics encountered in real-
world signals. Compared with MRF, the HMM models are effi-
cient in capturing inter-scale dependencies. [79], [80] inspired
a hierarchical interpretation of the wavelet decomposition
based on the idea that wavelet coefficients of single will have
large wavelet coefficients that persist along the branches of
tree, otherwise the branches is noise and can be trimmed.

This is the original work of optimal subband tree structuring
(SB-TS). Unlike DWT, the coefficients are decomposed to
create the full binary tree in SB-TS. During the same time,
[83] proposed the shift invariant wavelet packet decomposition
(SIWPD), which combine shift invariant wavelet transform
and SB-TS. In, [16] the wavelet coefficients were modeled
with zero-mean Gaussian random variables with high local
correlation. The Gaussian scale mixture (GSM) was proposed
in [91], which describes the joint densities of clusters of
wavelet coefficients as a jointly Gaussian vector multiplied by
a hidden scaling variable. By the same token, [17] proposed
a model (BLS-GSM) in which neighborhoods of wavelet
coefficients at adjacent positions and scales are described
as GSM which is a product of a Gaussian random vector
and an independent hidden random scalar multiplier. The
latter modulates the local variance of the coefficients in the
neighborhood, and is thus able to account for the empirically
observed correlation between the coefficient amplitudes. [92]
proposed the uHMT, a simplified hidden Markov tree (HMT),
to release the computational burden of the training stage of
HMM. [94] broke the independent assumption of wavelet
coefficients and proposes a heavy-tailed bivariate PDF to
model the statistics of wavelet coefficients. A simple nonlinear
threshold function (shrinkage function) is derived from the



Fig. 4. Flowchart of the proposed image denoising algorithm. The operations surrounded by dashed lines are repeated for each processed block (marked with
“R”). [25].

PDF using Bayesian estimation theory. [95] presented a locally
adaptive denoising algorithm using the bivariate shrinkage
function.

After the middle of 2000s, researchers tend to hybridize
existing method to achieve better denoising performance. [15]
presented an spatial adaptive wavelet thresholding, which
selects threshold based on local spatial information (e.g.,
smooth or edge regions). [97] proposed the shape-adaptive
discrete cosine transform (SA-DCT) transform, which defines
the shape of the transforms support in a pointwise adaptive
manner. The thresholded or attenuated SA-DCT coefficients
are used to reconstruct a local estimate of the signal within
the adaptive-shape support. Since supports corresponding to
different points are in general overlapping, the local estimates
are averaged together using adaptive weights that depend
on the regions statistics. Transform-domain image denoising
methods assume that the original signal can be sparsely rep-
resented in the transform domain, but none of the orthogonal
transforms can achieve sparse representation for all images.
[98] proposed a hybrid Fourier-wavelet denoising method to
overcome this shortcoming. [100] introduced the subband-
adaptive thresholding neural network to improve the efficiency
of the denoising procedure. [101] incorporated a wavelet-based
trivariate shrinkage filter with a spatial-based joint bilateral
filter. A hybrid Fourier and neighborhood wavelet coefficients
method was proposed in [99]. [107] combined wavelet-domain
sparsity and total variation (TV) regularization, which will be
discussed in section III-D.

Some other transform-domain methods are also investigated.
[18] proposed the curvelet transform that cooperates Fourier
and Radon transform with the wavelet transform to better
recover the edges after denoising. Based on the similar idea,
[93], [96] and [86] proposed contourlet, bandelet and wedgelet
transform, representatively. Two representative works on statis-
tical transform are ICA [85] and PCA [106] bases. The former
shows that independent component analysis (ICA) is effective
for sparse representation of natural-image patches and hence
for image denoising, and the latter presents an image denoising
scheme by using principal component analysis (PCA) with
local pixel grouping (LPG). The PCA method yields exciting
performance.

C. Non-local Approaches

A nonlocal filter exploits similarities between image blocks
(patches) from various spatial locations, hence the name
nonlocal. To the author’s knowledge, the non-local means (NL-
means) proposed by Buades [19] (2005) used for the first time
the term nonlocal in the context of image denoising. The NL-
means estimates a pixel as the weighted average of pixels
with weights that depend solely on the similarity between
neighborhoods centered at these pixels and the neighborhood
centered at the estimated pixel. Fig. 5 illustrates the scheme
of NL-means. It processes in the spatial domain.

Fig. 5. Scheme of NL-means strategy. Similar pixel neighborhoods give a
large weight, w(p,q1) and w(p,q2), while much different neighborhoods give
a small weight w(p,q3) [19].

In 2006, [102] extended the nonlocal spatial filter by Buades
et al., associating with each pixel the weighted sum of data
points within an adaptive neighborhood. It is competitive with
the best transform-domain filters. Thus arises the question
whether sparse transform-domain representations and nonlocal
modeling can be combined so that the strengths of both tech-
niques are preserved. The researcher from Finland, K. Dabov,
showed that the answer to this question is positive [103], and
he first named such algorithm as BM3D that is short for
block-matching and 3-D filtering in [25] (2007). The good
denoising result of the BM3D filter inspired applications of
this denoising scheme to other image processing applications.
The original BM3D scheme is shown in Fig. 4.



Since the invention of BM3D, most import developments
based on the BM3D were proposed by the group involving K.
Dabov [118] from Tampere University of Technology. They
proposed extensions of the BM3D filter to shape adaptive
(SA-BM3D) [104] and to shape-adaptive PCA representations
(BM3D-SAPCA) [26]. A breakthrough in image deblurring
occurred in [27] which also exploits the BM3D filter in
iterative variational minimization with a prior on sparsity.
[119] combines BM3D with transform-domain alpha-rooting
in order to simultaneously sharpen and denoise the image.
Then, the BM3D-based framework was extended to video or
series frame denoising—BM4D [108]–[110].

D. Other Approaches

Beside above approaches, some other originals algorithm
can also achieve the state-of-art performance like variational
formulations, sparse coding and deep learning. These methods
are mostly becoming hot topics in the recent decade.

1) Variational formulations: The original work of vari-
ational formulation was introduced by Rudin, Osher and
Fatemi (ROF) in [120] as a regularization approach capable of
handling properly edges and removing noise in a given image.
[32] employed this method in image denoising. In later works,
this method is always called total variation (TV) minimization.
Usually, it has two terms—data fidelity term and regularization
term which penalizes high frequency noise. Eq. 1 expresses the
general formula of TV minimization [121].

min
u

`(Ku,b) + λΩ(∇xu,∇yu) (1)

where u is the unknown noise-free image and K represents a
linear operator. `(Ku,b) measures the data fidelity between
Ku and the observation b. ∇xu and ∇yu compute the
discrete gradients of the image u along the x-axis and y-
axis, respectively. Ω(∇xu,∇yu) is the regularizer on ∇xu
and ∇yu, and λ is a positive parameter used to balance the
two terms for minimization. Most related works modify either
the data fidelity term or the regularization term. A brief review
is shown in Table II and III [121], representatively.

TABLE II
DATA FIDELITY TERMS

`(Ku,b) = Noise type
‖Ku− b‖22 Gaussian [120]
〈Ku− b · log(u),1〉 Multi-Poisson [122]
〈log(Ku) + b/(Ku),1〉 Multi-Gamma [123]
‖Ku− b‖1 Laplace [124]
‖Ku− b‖∞ Uniform [125]
‖Ku− b‖0 Impulse [121], [126]

TABLE III
REGULARIZATION TERMS

Ω(g,h) = Description∑n
i=1(g2

i + h2
i )

1
2 TV2 (isotropic) [120]∑n

i=1 |gi|+ |hi| TV1 (anisotropic) [124], [127]∑n
i=1 |gi|0 + |hi|0 TV0 [128], [129]

Most TV related works focus on global restoration of
the image. However, [130] employed adaptive median filter
to identify pixels which are likely to be contaminated by
noise, and then regularization method is applied only to those
selected noise candidates. Very recently, the regularization
term TV0, which is based on the `0-norm, has received much
attention. It has been shown to be particularly effective for
image smoothing [128] and motion deblurring [129].

2) Sparse coding: In 2006, M. Elad proposed the initial
sparse coding (SC) method for image denoising [31], in which
the common expression of sparse coding is shown in Eq. 2.

α̂ = arg min
α
‖Dα− y‖22 + λ‖α‖0 (2)

where considers image patches of size
√
n×
√
n pixels, vector-

ized as column vectors y ∈ Rn. The dictionary D ∈ Rn×k is
learned from training patches through K-SVD [105]. α ∈ Rk

denotes the sparse coefficient vector which is supposed to be
sparse. It looks similar with the TV-based method. The signif-
icant difference between them is the second (regularization)
term. TV minimization aims at removing high frequency part,
while sparse coding tends to represent the raw image with a
few atoms from the dictionary. Note that the `0-norm alway
cause the optimization function unsolvable, so it is usually
instituted by `1-norm.

Roughly, SC-based methods focus on two aspects: 1) dic-
tionary learning and 2) sparse coding. To speed up the process
of dictionary learning, [30] combined non-local method into
dictionary learning and proposes the clustering-based method
which makes use of locally learned dictionaries (K-LLD).
[24] borrowed the idea of BM3D to construct the dictionary
and uses grouped sparse coding. The author named such
method as learned simultaneous sparse coding (LSSC). For
different applications or better performance, later works added
some other penalty term to the end of the original objective
function (Eq. 2). [28] showed that the location uncertainty
of nonzero sparse coefficients is often related to the nonlocal
self similarity of image signals, and it propose the cluster-
based sparse representation (CSR) to achieving higher sparsity
by exploring the location related constraint. [112] (2014)
employed the proximal method [111] to solve the `0-norm
based dictionary learning, which used to be considered as
unsolvable. There are many variants from the original SC, as
well as different ways of solving the objective function. They
cannot be exhausted in this report, but they all share the similar
idea—representing an image patch as a linear combination of
a few atoms chosen out from an over-complete dictionary.

3) Deep learning: [33] presented stacked denoising auto-
encoders (SDAE) which is an original strategy for image
denoising using deep learning in 2010. [113] combined sparse
coding and SDAE to form stacked sparse denoising auto-
encoders (SSDA). Multi layer perceptron (MLP) was applied
in [114]. These methods are not robust to variation in noise
types beyond what it has seen during training. To address
this limitation, [115] presented the adaptive multi-column
stacked sparse denoising autoencoder (AMC-SSDA). To my



knowledge, there is not strong evidence to demonstrate that
the deep learning based approaches perform better than BM3D
or sparse coding.

IV. CONCLUSION

The main development direction of image noise measure-
ment and removal techniques is from spatial to transformed do-
main, from local to non-local statistics, and from thresholding
to optimization. From recent literature, the best performance
is achieved through grouped sparse coding in the transformed
domain (CSR) and shape-adaptive BM3D (BM3D-SAPCA).
Actually, sparse coding and BM3D share the similar idea that
the coefficients with relatively large value corresponds to the
pure signal and such coefficients should present sparsity. No
matter how denoising algorithm evolves, the ultimate goal
of denoising has never changed—smoothing the image and
preserving the details.
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